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Communication between organisms is crucial for their survival, especially for sessile organisms such as plants that
depend upon interactions with mutualistic organisms to maximize their nutrient acquisition. This communication can
take the form of the exchange of volatile compounds, metabolites or effectors—small protein signals secreted from the
colonizing cell that change the biology of the host cell. We recently characterized the first mutualistic effector protein
from an ectomycorrhizal fungus, a small secreted protein named MiSSP7 encoded by Laccaria bicolor. Ectomycorrhizal
fungi are soil-borne mutualistic organisms whose hyphae wrap around host roots and grow into the root apoplastic
space where the fungus exchanges nutrients such as nitrogen and phosphorus in return for plant derived sugars. The
MiSSP7 protein is induced by root exudates and is highly expressed throughout the root colonization process. Its
presence was responsible for alterations to the plant transcriptomic profile, a mechanism by which MiSSP7 may aid in
the formation of the symbiotic interface. Here we discuss the implications of these findings and, further, we demonstrate
that the production of MiSSP7 is induced by two flavonoids, rutin and quercitin, a class of compounds normally found
within the exudates of plant roots. We also consider the interesting similarities between the mechanisms of effector
induction and action between pathogenic and mutualistic fungi.

The large majority of terrestrial organisms, whether directly or
indirectly, depend upon the carbon source found within plant
tissues. Arguably, the process of carbon extraction is most delicate
for organisms dependent on living plant tissues. Pathogenic
organisms are well known for their use of small secreted proteins,
called effectors, that act to control plant function to the benefit
of the colonizing organism.1-4 How mutualistic organisms, and
especially mutualistic fungi, are able to live in harmony with
their plant hosts has been less clear. Kosuta and colleagues5 found
that a diffusible element from arbuscular fungi, later identified as
a lipochitooligosaccharide,6 was able to control the expression of
plant genes during the colonization process. More recently, for
the mutualistic ectomycorrhizal fungus Laccaria bicolor, we were
able to characterize a small secreted protein, MiSSP7, and its key
role during the colonization process of poplar root tissues.7 Like
the lipochitooligosaccharides discovered by Kosuta and colleagues,
and like pathogenic effector proteins, MiSSP7 was able to alter
the transcriptome of the plant cell which may contribute to its
role during the colonization of plant tissues. We hypothesized that
the transcriptional regulation was responsible, in part, for the
restructuring of plant cell walls to allow entry of fungal hyphae
into the root apoplastic space (Fig. 1). MiSSP7 was able to gain

access into the plant cell actively through the binding of
an RXLR-like motif to membrane phospholipids, an entry
mechanism previously only found for pathogenic effectors.8,9

The exact role of RXLR and RXLR-like motifs in mediating cell
entry has garnered much debate. Recently, Yaeno and colleagues10

published work demonstrating that it was not these regions that
mediated cell entry directly, but rather that mutations to these
regions changed the protein conformation such that key charged
residues needed for lipid binding were not exposed at the surface
of the protein. As it is possible that a similar event is occurring in
MiSSP7, we are currently attempting to determine the three-
dimensional structure of MiSSP7. Concurrently with our study,
Kloppholz and colleagues11 also published work characterizing
SP7, a secreted protein from the arbuscular mycorrhizal protein
Glomus intraradices, which has similar characteristics to MiSSP7
in its ability to enter host cells and to affect the host trans-
criptome. These results suggest convergent evolution in the
development of colonization strategies between pathogenic and
mutualistic organisms.

MiSSP7 and a group of other similarly sized secreted proteins
from L. bicolor were first annotated as putative signaling
agents during the colonization of plant tissues based on their
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transcriptional regulation in mycorrhizal root tissues.12 We
were therefore surprised in our early work characterizing the
MiSSP7 protein to find that it was expressed very early in
the interaction with plant roots, potentially even before root
contact as root exudates were able to induce its expression.7

In retrospect, based on the proposed action of MiSSP7 in
preparing the plant tissues to accept colonization by the
fungus, this early expression is very important for the proper
functioning of MiSSP7. This leads to questions concerning
the specific mechanisms and signals in place that are res-
ponsible for initiating the expression of MiSSP7—an area
that we have begun investigating. We were able to show
in our initial characterization that MiSSP7 was induced by
root excretions from both host (poplar) and non-host
(Arabidopsis thaliana) roots, suggesting that there are both
specific and non-specific signals within the rhizosphere that
are responsible for the induction of MiSSP7.7 Although
there are thousands of proteins and metabolites produced
by plant roots, a number of signals are commonly associated
with signaling within the rhizosphere.13,14 Of these, we have
initially considered the role of nutrients and flavonoids in
their ability to induce the expression of MiSSP7. We found
that the flavonoids rutin and quercetin were able to induce
the expression of MiSSP7 in the absence of a tree host
(Fig. 2). Similarly, it has been found that the flavonoid
luteolin was able to induce the expression of Nod factors in
mutualistic bacteria Rhizobia spp.15 and the flavonoid pisatin

Figure 1. MiSSP7 is required for root cell remodeling and hyphal
penetration into the root apoplastic space. In the interaction
between the ectomycorrhizal fungus Laccaria bicolor and poplar
roots, the fungus surrounds the root and induces morphological
changes in the epidermal cells and loosens the connections
between the root cells such that fungal hyphae are able to
penetrate in between the cells as seen in (A; arrow). When the
production of the small secreted effector protein MiSSP7 of
L. bicolor is reduced the same alterations to root epidermal cells
are not observed nor are the connections between root cells
loosened such that the fungal hyphae are not able to grow into
the apoplastic space (B; arrows). Alterations to plant cell
morphology and hyphal ingrowth are restored when MiSSP7
is expressed heterologously in poplar roots (C; arrow). All
experiments were performed in triplicate to ensure reproducib-
ility. Scale bar = 20 mm.

Figure 2 (See opposite page). Root flavonoids act as a signal to
induce the production of MiSSP7. Indirect immunolocalizations of
MiSSP7 performed as described by Plett and colleagues (2011) on
L. bicolor grown on cellophane in indirect contact with poplar
roots (A) or dosed with water (B; control treatment) or with
100 mM of glucose (C), rhamnose (D), rutin (E) or quercitin (F) every
two days for one week. MiSSP7 is only produced when in indirect
contact with root tissue or when treated with the flavonoids rutin
and quercitin. All experiments were performed in triplicate to
ensure reproducibility. Scale bar = 70 mm.
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Figure 2. For figure legend, see page 3.
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was able to induce expression of PDA1 in the soil pathogen
Nectria hematococca MPVI.16 Further, rutin alters the growth
characteristics of many fungi, inducing hyphal growth in different
strains of Pisolithus, another ectomycorrhizal fungus,17 as well as
in the phytopathogenic fungi Alternaria alternata, Botrytis cinerea
and Fusarium solani.18 Given the wide range of organisms in
which flavonoids are able to induce transcription, it is likely that
flavonoids act as non-specific signals within the rhizosphere, and
here during the induction of MiSSP7. Based on the demonstra-
tion that several root exudates have inductive potential for any
one mutualistic or pathogenic effector during inter-organism
interactions,19,20 these studies would suggest that multiple
compounds within the rhizosphere, both specific and non-
specific, are responsible for the induction of MiSSPs, and MiSSP7
in particular, in a natural ecosystem. Therefore further work
must be done to identify and differentiate host specific and non-
specific signals that induce the expression of MiSSP7 and the
other MiSSP proteins.

One final thought that we brought out in our discussion of the
results characterizing MiSSP7,7 and that is further reinforced here,
is the intriguing similarity between the mechanisms of coloniza-
tion used by mutualistic and pathogenic organisms. In our first

paper on MiSSP7 we demonstrated that this protein gained access
to the plant cell via recognition of an entry motif normally found
in pathogenic effectors, and that MiSSP7 was able to alter the
plant transcriptome as do pathogenic effector proteins. Here we
demonstrated that flavonoids are a root-derived signal that induce
the production of MiSSP7, a group of compounds also known for
their role in the induction of other mutualistic and pathogenic
colonization factors. Together these results continue to highlight
the fact that the boundary that separates pathogens and mutualists
is a gray area. It will be interesting in the coming years to try
and dissect the checks and balances that make one interaction
mutually beneficial for both partners while in other relationships
one partner is able to exploit the other.
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