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ABSTRACT

Motivation: Gene prediction in metagenomic sequences remains

a difficult problem. Current sequencing technologies do not achieve

sufficient coverage to assemble the individual genomes in a typical

sample; consequently, sequencing runs produce a large number of

short sequences whose exact origin is unknown. Since these

sequences are usually smaller than the average length of a gene, al-

gorithms must make predictions based on very little data.

Results: We present MetaProdigal, a metagenomic version of the

gene prediction program Prodigal, that can identify genes in short,

anonymous coding sequences with a high degree of accuracy. The

novel value of the method consists of enhanced translation initiation

site identification, ability to identify sequences that use alternate

genetic codes and confidence values for each gene call. We compare

the results of MetaProdigal with other methods and conclude with a

discussion of future improvements.

Availability: The Prodigal software is freely available under the

General Public License from http://code.google.com/p/prodigal/.
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1 INTRODUCTION

Metagenomes from environmental samples can contain thou-

sands of species and often cannot be sequenced to sufficient

coverage to assemble each individual genome. Even with

enough coverage, the correct binning and assembly of the vari-

ous sequences still present many challenges, making it likely that

at least for the immediate future, metagenomic sequencing will

continue to produce a large number of small contigs.

1.1 Challenges in short, anonymous sequences

Various sequencing technologies, such as 454, Illumina and

Sanger, can produce reads anywhere from 50 to 41000 bp

when analyzing a typical metagenomic sample. In the first

case, gene identification becomes extremely difficult; in the

latter case, genes can be predicted rather well. In addition,

sequencing errors, particularly the insertions and deletions

common to 454, can have a profound negative impact on meta-

genomic gene prediction (Hoff, 2009; Rho et al., 2010).
In reality, there are two problems in metagenomic gene pre-

diction. The first problem, which we call the anonymous se-

quence problem, is that the genome from which the sequence

was derived is unknown. The second problem, which we will

refer to as the short sequence problem, is that the sequences

are shorter than the length of an average gene, and therefore,

many fragments contain genes that run off one or both edges of

the contig. Although many methods treat these two problems

together, and, indeed, the second problem does exacerbate the

first, in reality, they are two separate issues. Short sequences

present challenges even for draft contigs in a single genome, par-

ticularly in the identification of edge genes, and long sequences

whose origin is unknown can still prove difficult to analyze as

accurately as if the genome was known.
Many programs have been developed to solve these prob-

lems and identify genes in metagenomic fragments, including

Metagene (Noguchi et al., 2006), Metagene Annotator

(Noguchi et al., 2008), MetaGeneMark (Zhu et al., 2010),

Orphelia (Hoff et al., 2008) and FragGeneScan (Rho et al.,

2010). Although these methods perform well, none of them spe-

cializes in identifying translation initiation sites and none of them

is able to correctly identify sequences derived from the

Mycoplasma genus, which uses an alternate genetic code that

translates UGA to tryptophan (Yamao et al., 1985).

1.2 The Prodigal gene prediction program

The gene prediction program Prodigal was introduced in 2007

(Hyatt et al., 2010). Prodigal achieves good performance in iden-

tifying genes and translation initiation sites in finished genomes

(Angelova et al., 2010; de Jong et al., 2010; Hyatt et al., 2010).

The Joint Genome Institute uses Prodigal to annotate all its draft

and finished genomes for the Department of Energy. Prodigal

has been downloaded over 1000 times by users from 56 different

countries and is in active use at numerous institutions around the

world (data provided by analytics.google.com).

Because Prodigal’s training methodology already incorporates

a great deal of information, including translation table, hexamer

statistics, ribosomal binding site (RBS) motifs and upstream base

composition, we sought to create extensions to the existing soft-

ware that would handle metagenomic gene prediction, rather

than to begin from nothing. Our idea was to create a variety

of Prodigal training files covering all ranges of GC content, gen-

etic codes, Eubacteria, Archaea, etc. and analyze an incoming*To whom correspondence should be addressed.
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fragment using one or more of these files. The resulting predic-

tion would then be chosen based on the training file(s) that

provided the best fit for a particular sequence.

1.3 The focus of MetaProdigal

In developing a metagenomic version of Prodigal, we chose to

focus on optimizing performance for longer sequence lengths

(700 bpþ), in the belief that sequencing, binning and assembly

technologies will rapidly improve to the point where extremely

short sequences are no longer the norm. Despite this focus, we

still ensured our algorithm would perform reasonably well on

shorter sequences.
In addition, although we acknowledge the severe impact of

sequencing errors on gene prediction, it proved too difficult to

integrate the handling of insertions and deletions into the

Prodigal framework. We also assert that frame shifts will

become increasingly less of a problem with future improvements

to sequencing and assembly technologies. In the meantime,

FragGeneScan (Rho et al., 2010) has demonstrated robust hand-

ling of insertions and deletions for those using 454.
Our algorithm provides three novel contributions: (i) the in-

corporation of start site information into our training files,

enabling excellent recognition of translation initiation sites, par-

ticularly at longer sequence lengths; (ii) the ability to predict

genes in sequences from organisms that use an alternative genetic

code (Mycoplasma) and (iii) the provision of confidence values,

which can be used to filter gene predictions (useful when dealing

with small gene fragments).

2 MATERIALS AND METHODS

The first step in our algorithm was to develop a set of training files that

could be used to score an anonymous coding sequence using the existing

Prodigal algorithm. To generate these training files, we turned to NCBI’s

Refseq repository, which, as of September 2010, contained 1415 genome

sequences of 500 000 bases or greater (Pruitt et al., 2009). The idea was to

partition all microbial Refseq into a set of clusters, where each cluster

could be used to create a single training file. Rather than determining the

number of clusters ahead of time, we hoped to establish a dissimilarity

cutoff between clusters, such that we would halt the clustering process

when the distance between the closest two clusters exceeded the estab-

lished dissimilarity threshold.

Before Refseq could be partitioned into clusters, we first needed to

establish a distance measure between two genomes. Although various

methods already existed for measuring the distance between two gen-

omes, we decided instead to use a novel measure to calculate the distance

between two genomes based on the Prodigal. The reason for choosing this

method is that we wanted something computational and not biological in

nature, such that we could be certain that, from Prodigal’s perspective as

a computer software, two genomes in the same cluster would be truly

similar. We called this new measure gene prediction similarity.

2.1 Gene prediction similarity

Prodigal can examine a single genome and record its statistics in a train-

ing file, which can then be used to analyze individual sequences from that

genome. Given two genomes A and B, we can train Prodigal on genome

A and then use that training file to predict genes in both genomes A and

B. By examining how the predictions differ, we can measure the effective

difference between the two genomes.

We trained Prodigal on all 1415 microbial Refseq sequences individu-

ally. Next, for each training file, we predicted the genes in all the 1415

genomes. This resulted in 1415 � 1415, or 2 002 225, runs, each of which

took about 15 s on average, for a total of about 8000 processor hours.

We performed these runs on a 64-node cluster with 512 AMD Opteron

processors, enabling this run to finish in a single day.

Once we had these results, we considered the diagonal of the 1415 �

1415 matrix to be the baseline, i.e. the runs where Prodigal was trained

and run on the same genome. We then needed a method for measuring

the similarity between two sets of gene predictions, one in which Prodigal

was trained and run on genome A and one in which Prodigal was trained

on a different genome (B, for example) and run on genome A. We defined

this to be the gene prediction similarity B!A.

For a given baseline prediction p, and a second set of predictions p 0, we

considered the number of correct matchesM between the two predictions

to be:

M ¼ ðm� ððaþ d Þ=600:0ÞÞ;

where m is the number of genes in p and p0 that share a stop codon, a is

the number of bases in the second prediction not contained in the first

prediction for only the genes that share a stop codon and d is the number

of bases in the first prediction not contained in the second prediction for

only the genes that share a stop codon. The idea was to calculate the

average distance between start codons and penalize 10% for every 60 bp

difference (distances4600 bp in a single gene were reduced to 600 bp, i.e.

we could not penalize4100% per gene). For example, if 1500 genes that

share a stop codon differed by 30 bp on average in their start site pre-

dictions, then, instead of 1500 correct identifications, we counted them

as 95% of 1500 or 1425. The reason for this modification was to allow

differences in translation initiation site prediction to be incorporated into

the clustering model.

In addition, we made one further modification that if the predictions

failed to achieve a 90% perfect match in start sites among genes that

shared a stop codon, we instead labeled every mismatch as only

half correct. For example, if genome B correctly predicted 1500 genes

(stop codons) in A, but only 1200 of those 1500 genes (80%) matched

perfectly (start and stop codon), the match count M would be set to

1200þ 300� 0.5¼ 1350.

The idea behind this rule was to detect cases such as Aeropyrum pernix,

which preferentially chooses TTG as its start codon (Kawabarayasi et al.,

1999). When using another organism to predict the genes in A. pernix, the

second organism frequently performed quite well at finding the stop

codons and would even predict genes of approximately the same size,

choosing a nearby ATG whenever available (because ATG is preferred in

the second organism’s training file). However, only �50–60% of the

genes matched perfectly. We decided to penalize heavily for this situation,

because the results indicated a substantially different preference in trans-

lation between the two organisms.

Given the above information, we next needed to normalize the above

value of M to be a number between 0 and 1. Therefore, we defined the

‘gene prediction similarity D(A0!A)’ to be the F-score, or the harmonic

mean of the sensitivity (M/n) and precision (M/n0):

DðA0 ! AÞ ¼ 2M2=ðMnþMn0Þ;

where n is the number of genes in A and n0 is the number of genes in A0.

The only difference between this sensitivity and precision and that

described in the Prodigal paper is that we penalized matching 30 genes

for the distance between their start site predictions. It is worth noting that

gene prediction similarity is not symmetrical. Although usually, A’s abil-

ity to predict the genes in B is fairly close to B’s ability to predict the genes

in A, quite frequently one genome will predict genes quite well in its

counterpart, while the opposing genome will do quite poorly on the

first one.

2224

D.Hyatt et al.

 at O
ak R

idge N
ational L

aboratory on N
ovem

ber 16, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


Table 1 shows an example of gene prediction similarity calculations

between Escherichia coli K12 and a variety of organisms. Prodigal was

trained on each of these organisms and then run on E. coli, and the gene

prediction similarity was calculated using the previously described for-

mula. ‘NG’ indicates the number of genes predicted by the second train-

ing file. ‘30M’ and ‘50M’ indicate the number of genes that match a stop

codon and start codon in the E. coli predictions. ‘XB’ indicates the (a0 þ

d0)/600 term in the match equation and indicates the number of genes we

are penalizing from the final result. The next column, ‘M,’ represents the

number of matches, which we then divide by 4313 (the number of genes in

the E. coli prediction) to get the sensitivity and by the number in the first

column (NG) to get the precision. The final gene prediction similarity is

then the harmonic mean of Sn and Pr. Note that in the cases marked with

an asterisk, we applied the alternative formula described above for calcu-

lating M, since590% of the starts were correct (i.e. 50M/30M5 0.9).

Observing Table 1, we can see that E. coli S88 produced gene predic-

tions extremely close to the original, which is to be expected for the same

species. The highly similar Salmonella enterica also performed extremely

well. The two Archaea proved to be quite distant, especially A. pernix

with its TTG start motif. Finally, Mycoplasma bovis performed the worst

of the entries in this table, due to using a completely different genetic

code. Clostridium difficile proved interesting, as it failed to predict many

real genes (�15%) in E. coli, but the genes it did predict were mostly

correct (98% Sp).

2.2 Complete-linkage clustering of Refseq

Having obtained a reliable distance measure, we built the 1415 � 1415

distance matrix for all sequences above 500 000 bp in microbial Refseq.

Note that some of these sequences were chromosomes belonging to the

same genome, but we kept these separate because we found it interesting

to examine gene prediction similarities within multiple chromosomes in a

single genome. The distances in this matrix could be used for a variety of

purposes beyond the scope of this article, such as building phylogenetic

trees or establishing cutoffs to delineate species, genus and family

boundaries.

Next, we clustered the sequences using an algorithm similar to

complete-linkage clustering, in which, at each step, the two clusters are

merged whose farthest neighbors are the closest (Massaro, 2005). We

chose this method to avoid the problem of population bias in

Genbank, where more strains of one organism (for example, E. coli)

have been sequenced than another. This makes merging clusters of dif-

ferent sizes using various weighted average distance methods difficult.

When calculating the distance between two clusters, we examined the

new cluster that would be created by merging them. For each point in the

potential new cluster, we located the point farthest away from it, i.e.

the one with the lowest gene prediction similarity, which corresponded

to the sequence least recognized by the initial data point. We then chose

the data point that had the ‘best’ such distance, which can be roughly

thought of as the central-most point in the merged cluster. We label this

sequence as the ‘recognizer’ of the cluster. An example cluster using these

concepts is illustrated in Figure 1, in which Pseudomonas aeruginosa

would be chosen as the recognizer for the cluster based on its worst

gene prediction similarity being better than that of the other two organ-

isms. At each step of the clustering algorithm, the two closest clusters

were merged, until only one cluster comprising all 1415 sequences

remained.

After the clustering was completed, we examined the similarity cutoffs

and found that the score dropped below 95% when going from 51 to 50

clusters. Therefore, with 50 training files, a gene prediction similarity of

95% or better would be guaranteed across all microbial GenBank. We

then trained MetaProdigal on the sequences in these 50 clusters, resulting

in 50 training files that could be used to recognize anonymous coding

sequences. A detailed list of the 50 clusters (with their best recognizer) is

provided in Supplementary Table S1.

Of the 50 genomes selected by the clustering process, 35 were bacteria

and 15 were Archaea. Three of the bacteria were from the Mycoplasma

genus, which uses translation table 4, while the remaining 47 genomes

used the standard translation table. Thirty-two of the chosen genomes

used Shine-Dalgarno RBS motifs (Shine and Dalgarno, 1975), and 18

genomes (many of them are Cyanobacteria, Chlorobi or Archaea) did

not. GC content of the 50 genomes ranged from 29.3 to 69.8%. The five

largest clusters consisted of 262, 232, 184, 130 and 98 genomes, respect-

ively, accounting for 64% of the 1415 sequences in GenBank, with the

remaining 45 clusters covering the other 36%. Despite the top five clus-

ters being very large, the average gene prediction similarities of their

recognizers was over 98.5%. The 50 genomes roughly subdivided into

Table 1. Sample gene prediction similarities for Escherichia coli K12

Genome NG 30M 50M XB M Sn Pr GPS

E. coli K12 4313 4313 4313 0.0 4313.0 1.00 1.00 1.000

E. coli S88 4315 4307 4287 2.5 4304.5 0.99 0.99 0.998

S. enterica 4309 4290 4241 7.2 4282.8 0.99 0.99 0.993

Brucella melitensis 4197 4159 3991 27.2 4131.8 0.96 0.98 0.970

Helicobacter pylori 4036 4010 3746 39.7 3970.3 0.92 0.98 0.952

C. difficile 3707 3669 3379 40.1 3628.1 0.84 0.98 0.910

Aquifex aeolicus 3904 3829 3146 78.6 3487.5* 0.81 0.89 0.851

A. pernix 3282 3128 1330 399.6 2229.0* 0.52 0.68 0.598

M. bovis 3520 2459 2090 185.0 2274.5* 0.53 0.65 0.587

Fig. 1. Example of best worst distance and recognizer in cluster
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3% GC intervals, with a Shine-Dalgarno-using bacterium, a non-Shine-

Dalgarno bacterium (such as a Cyanobacteria or Chlorobi) and an

Archaeum at each interval.

One can see from the supplementary table that many clusters are

devoted to small numbers of ‘unusual’ genomes, with a relatively small

number of clusters covering the common organisms such as E. coli,

Pseudomonas, etc. In fact, 26 of the 50 clusters contained five or fewer

genomes. An open question would be if devoting so many training files

for recognizing such a small number of genomes is worthwhile. An alter-

native approach would delve into more detail on the larger clusters,

splitting them further. As noted in the previous paragraph, however,

recognition of even the largest clusters was already at 98.5%, so it is ques-

tionable if one could really get a significant improvement by doing so.

2.3 Using the Prodigal training files for metagenomic

analysis

By using the 50 training files, an input sequence can be scored with the

standard Prodigal dynamic programming algorithm for finished genomes

(Hyatt et al., 2010). Since the Prodigal dynamic programming function

returns a numerical score, the algorithm can run an input sequence

through each of the 50 training files and output only the best result.

However, this approach presents two drawbacks: (i) increased computa-

tion time (50 times a normal Prodigal run) and (ii) increased false-positive

rate at shorter sequence lengths due to sampling multiple training files.

To address the first drawback, MetaProdigal calculates the GC con-

tent for an incoming fragment and runs only on the training files within a

given range of GC content relative to the fragment GC (a configurable

parameter). To address the second drawback, we implemented a series of

penalties for each gene in a sequence based on the length of the input

sequence, the number of training files used to score the sequence and the

length of the gene being scored. The principle of these penalties is similar

to that of a Bonferroni correction (Bonferroni, 1935), in which a score is

corrected based on the number of tested hypotheses (in this case, each test

is a training file). Such a correction was only necessary in shorter se-

quences (5500 bp), where a lack of sufficient information resulted in

greater volatility when using multiple training models to score a gene.

One novel contribution of our algorithm is the calculation of confi-

dence scores for each gene. Since the MetaProdigal score represents the

log of the likelihood of this gene to be real versus background (i.e. a gene

1000� more likely to be real than false would have a score of ln(1000)),

the score can be converted to a percent value between 0 and 100 exclusive

using the logistic function

C ¼ es=ð1þ esÞ;

where C is the confidence value and s is the Prodigal score for that gene.

We will examine the performance of this confidence score in the Results.

The algorithm for the MetaProdigal is illustrated in Figure 2. A se-

quence arrives on standard input, the lower and upper GC content

bounds for the fragment are established, and the full dynamic program-

ming is performed using only training files trained on genomes with GC

content in the specified range. The highest scoring set of gene models is

selected and output to the user, along with confidence scores for each

gene and detailed information about the training file used (genetic code

used, Shine-Dalgarno preferences, etc.). In addition, as in the regular

version of Prodigal, protein translations, DNA sequences and detailed

information about every potential start site in the sequence can be output

on request.

As a result of running a full dynamic programming algorithm multiple

times, which admittedly is complete overkill on short fragments,

MetaProdigal is somewhat slow compared with existing programs like

MetaGene Annotator and MetaGeneMark (Noguchi et al., 2008; Zhu

et al., 2010). However, the finished genome version only took �15–20 sec

to analyze a typical 4M bp genome on a single processor, so, even run-

ning on five to six training files per sequence, the metagenomic version

can analyze 4M worth of data in about 100 s. A 1 GB sample could be

analyzed in 7 h on a single processor at this rate, which, in our experience,

is an acceptable turnaround time, especially given the ease by which the

sample could be divided and run on multiple processors.

3 RESULTS

Assessing the performance of metagenomic gene prediction tools

remains a difficult task, due to the lack of experimentally verified

gene sets. Tools such as Metagene Annotator, MetaGeneMark,

Orphelia and FragGeneScan, have compared their predicted re-

sults with GenBank annotations (Hoff et al., 2008; Noguchi

et al., 2008; Rho et al., 2010; Zhu et al., 2010). By using this

method, complete genomes from Refseq are sampled to a certain

level of coverage at various fragment sizes (either with or without

simulated errors), and the predicted results are compared with

the positions of the GenBank-annotated genes in the fragments.
Unfortunately, this methodology has one significant draw-

back. Since the gene calls in Refseq have not been experimentally

verified, it is likely some of them are incorrect. Error rates

have been shown to be greater in genomes containing high GC

content (Angelova et al., 2010). In addition, some translation

initiation site predictions are likely to be incorrect as well,

which could have an impact on gene predictions as fragment

sizes become smaller. Nonetheless, the chosen genomes represent

a good cross section across bacteria, Archaea and all levels of

GC content. Therefore, we decided to analyze the results of

MetaProdigal on the 50 genome set from the MetaGeneMark

publication, according to the same standards described previ-

ously (Zhu et al., 2010).

3.1 Gene prediction performance on an errorless simulated

dataset

In the first analysis, we measured the performance of several

methods at locating genes in an errorless simulated dataset. In

this dataset, we did not consider the performance of programs on

identifying translation initiation sites, because the error rate of

start site predictions in the Genbank files is likely too high to

make such a test meaningful (we examine start site performance

separately in the next section). Each of the 50 sequences in the

MetaGeneMark set was randomly sampled to 5� coverage in

four different fragment sizes: 150, 300, 700 and 1200 bp.

Sequencing errors were not considered for this analysis. In add-

ition, one genome was added to the 50 Refseq sequences, namely

that of Mycoplasma leachii. Since �2% of the finished genomes

in GenBank are Mycoplasma (Benson et al., 2011), adding one

Mycoplasma to a set of 50 sequences seemed like a reasonable

Fig. 2. Pseudocode description of the MetaProdigal algorithm
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addition. This genome was added to the set to demonstrate how

MetaProdigal can distinguish between genetic code 4 (used by

Mycoplasma) and genetic code 11 (the standard microbial code)

and achieve good performance on both types of genomes.

Neither MetaGeneMark nor MetaGene Annotator possesses

this capability, and both programs performed poorly on the

M. leachii genome. A complete list of the 51 sequences used to

evaluate the algorithms can be found in Supplementary Table S2.
As described above, genes 560 bp, whether partial or com-

plete, were not considered. The programs were only evaluated

on their ability to predict genes of 60 bp or more in length.

Regardless of the amount of coding present in a fragment,

only the stop codon (or correct frame in the absence of a stop

codon) and 60 bp of shared coding were required; the start

codon was not required to match the predicted start in the

Genbank file. For this analysis, we created a special version of

MetaProdigal in which we excluded the 51 genomes in our test

set from the clustering and training process; however, for

the release version, these genomes were added back in to the

training process. Table 2 shows the results of four methods: fin-

ished genome Prodigal, MetaProdigal, MetaGeneMark and

MetaGene Annotator. The finished genome version of Prodigal

(labeled as Prodigal_Finished in Table 3) was run to observe how

closely the metagenomic version could match a version trained

on the actual genome. In this analysis, the sensitivity, precision

and F-score were calculated separately for each of the 51 se-

quences and then averaged together to produce the numbers in

Table 2. We define sensitivity to be TP/(TP þ FN), precision to

be TP/(TP þ FP) and F-score to be the harmonic mean of the

precision and sensitivity, or 2pr/(pþ r).

In the longer fragment lengths, it is clear that MetaProdigal

performs very closely to a version trained on the actual genomes

(0.4 difference in F-score at 1200 bp, 0.7 at 700 bp, 1.5 at 300 bp

and 3.2 at 150 bp). The implication is that for longer sequence

lengths, such as 2000 bp, MetaProdigal identifies genes nearly

as well as if it had actually been trained on the full reference gen-

ome. At the 700 and 1200 bp sequence lengths, MetaProdigal

outperforms MetaGeneMark and MetaGene Annotator both in

sensitivity and precision. At 300 and 150 bp, MetaProdigal still

has better sensitivity and precision than MetaGene Annotator,

but MetaGeneMark achieves a lower false-positive rate and

better overall accuracy at 150 bp. Based on our results, it appears

that MetaProdigal performs better at sequence lengths 250–300

bp and above, whereas MetaGeneMark, due to a lower

false-positive rate, achieves a better F-score at lengths5250 bp.
We view the two programs (MetaProdigal and MetaGene

Mark) as quite complementary on smaller sequences, however,

as MetaProdigal seems to preserve sensitivity as sequence lengths

grow shorter, whereas MetaGeneMark sacrifices sensitivity to

preserve precision. At all four sequence lengths, overall accuracy

was within 1% between MetaProdigal and MetaGeneMark,

which may well lie in the margin of error based on incorrectly

called genes in the Refseq annotations. However, it is likely that

both programs perform better than MetaGene Annotator at

identifying genes.

In the particular case of M. leachii, the genome we added to

the MetaGeneMark set, the MetaProdigal achieved 95.3% sen-

sitivity and 94.3% precision even in the 150 bp fragments,

whereas MetaGeneMark and MetaGene Annotator managed

only 78.1 and 83.6% sensitivity, respectively. In 1200 bp frag-

ments, MetaGeneMark and MetaGene locate most of the stop

codons, but, because Mycoplasma translates TGA, they often

only find the 30-end of the gene and split the true gene into

many smaller genes. Therefore, the precision in 1200 bp frag-

ments for MetaGeneMark and MetaGene was only 69 and

66%, respectively, whereas MetaProdigal had 98% sensitivity

and 97.3% precision MetaProdigal can distinguish anonymous

coding sequences using the Mycoplasma genetic code without

sacrificing performance on the sequences that use the standard

genetic code, which is a novel capability of the program com-

pared with other methods.

Recent publications have considered combining gene predic-

tion methods for better results (Yok and Rosen, 2011). Although

examining more elaborate methods of combining MetaProdigal

and MetaGeneMark gene predictions is beyond the scope of this

article, however, we did benchmark the performance of the inter-

section of the gene sets predicted by each program. These data

are presented in the ‘Combined’ column in Table 2. Although

Table 2. Performance on 51 genome sequences from Refseq

Category MetaProdigal

(%)

MetaGeneMark

(%)

MetaGene Annotator

(%)

Prodigal finished

(%)

Combined (MP þ MGmk)

(%)

1200 bp sensitivity 95.5 95.2 94.9 95.9 93.5

1200 bp precision 95.4 94.0 93.6 95.8 96.9

1200 bp F-score 95.4 94.6 94.2 95.8 95.3

700 bp sensitivity 95.1 94.6 94.7 95.5 93.1

700 bp precision 95.0 94.1 92.9 95.9 96.9

700 bp F-score 95.0 94.3 93.8 95.7 95.0

300 bp sensitivity 94.5 93.6 94.1 95.0 91.8

300 bp precision 93.5 94.1 91.1 96.1 96.5

300 bp F-score 94.0 93.8 92.6 95.5 94.1

150 bp sensitivity 92.5 91.0 91.7 94.0 88.4

150 bp precision 90.0 92.6 88.1 94.9 95.1

150 bp F-score 91.2 91.8 89.9 94.4 91.6
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sensitivity dropped, the precision of the predictions improved

dramatically, exceeding even that of the finished genome version
of Prodigal. Even at 150 bp, the precision of the set of genes

predicted by both MetaGeneMark and MetaProdigal remained

above 95%. These data highlight the advantages of using
multiple methods to obtain a set of high confidence gene

models. Even though MetaProdigal’s performance is similar to

MetaGeneMark’s individually, the inclusion of another method
still provides substantial value.

3.2 Translation initiation site prediction performance

on an experimentally verified gene set

Start site identification in metagenomic sequences has not been

studied much in the literature, although programs such as

MetaTISA have been built to address this problem (Hu et al.,
2009).Although theprimary focus remains finding the genes them-

selves, it is still desirable to locate as many translation initiation

sites correctly as possible. The problem is complicated by the fact
that some organisms use Shine-Dalgarno ribosomal binding site

(RBS) motifs, whereas others, such as Cyanobacteria and

Chlorobi, do not appear to use RBS motifs at all (Hyatt et al.,

2010). Regardless of the presence or absence of an RBS motif,

one of the 50 training files used in the metagenomic version of

Prodigal will likely assign that start site a positive score, because

both SD and non-SD organisms are included.
To assess start site performance, we took the dataset from the

Prodigal publication, containing 2443 genes (Aivaliotis et al.,

2009; Hyatt et al., 2010; Rudd, 2000). The genomes were ran-

domly sampled in five fragment sizes: 150, 300, 700, 1200 and

3000 bp, with the restriction that the fragment must contain at

least 60 bp of 1 of the 2443 experimentally verified genes. We

added the longer fragment size to illustrate the continuing in-

crease in start site accuracy as more information becomes avail-

able. Again, for this analysis, we used a special version of

MetaProdigal that had not been trained on any of the genomes

in this dataset; however, we did include these genomes in the

training process for the final release version (resulting in much

higher performance on some of the Archaea). The performance

on this dataset is given in Table 3. The results of the regular

version of Prodigal are again shown for comparison (in the

‘Prodigal Finished’ column) as a best achievable result for the

metagenomic program.

Table 4. Prodigal confidence estimations for 51 genome sequences from Refseq

Fragment length (bp) Confidence (%) Real genes False genes % Real % False Sn Pr F-score

700 100 854 622 6727 99.2 0.8 60.0 99.2 79.6

700 90–99 441 336 23 011 95.0 5.0 90.9 97.8 94.3

700 80–89 35 547 10 648 76.9 23.1 93.4 97.1 95.2

700 70–79 19 307 9512 67.0 33.0 94.8 96.4 95.6

700 60–69 10 200 7311 58.2 41.8 95.5 96.0 95.8

700 50–59 5796 6212 48.3 51.7 95.9 95.6 95.8

300 100 772 854 5061 99.3 0.7 29.7 99.3 64.5

300 90–99 1 552 693 73 289 95.5 4.5 89.4 96.7 93.1

300 80–89 78 026 33 410 70.0 30.0 92.4 95.6 94.0

300 70–79 41 307 32 911 55.7 44.3 94.0 94.4 94.2

300 60–69 15 789 17 670 47.2 52.8 94.6 93.8 94.2

300 50–59 7373 11 673 38.7 61.3 94.8 93.4 94.1

Table 3. Performance on 2443 experimentally verified genes and start sites

Length (bp) Type % Total MetaProdigal

(%)

MetaGeneMark

(%)

MetaGene

Annotator (%)

MGA þ Meta

TISA (%)

Prodigal

finished (%)

3000 Internal 77.4 93.5 86.3 87.6 93.3 96.3

3000 External 23.6 99.8 98.3 94.2 83.4 99.8

1200 Internal 56.9 91.6 85.3 86.7 90.5 95.0

1200 External 43.1 99.8 98.8 94.1 82.9 99.8

700 Internal 42.4 89.5 83.5 85.6 86.7 93.7

700 External 57.6 99.8 99.2 94.0 82.8 99.8

300 Internal 21.7 82.1 77.1 80.1 71.0 88.2

300 External 78.3 99.7 99.0 93.8 81.3 99.8

150 Internal 9.4 66.0 60.4 66.5 26.9 75.2

150 External 90.6 99.6 98.9 94.0 80.0 99.8
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Accuracy in start site prediction was defined to be the percent-

age of start sites correctly identified from the successfully located

genes, i.e. we did not penalize a program for being less sensitive

at finding genes overall. For the start site accuracy, we divided

the start sites into two categories: those where the start site was

present in the fragment (‘Internal’) and those where the correct

start site lay beyond the edge of the fragment (‘External’).

The ‘% Total’ column indicates the percentage of the total

start sites that belong to that category. At shorter sequence

lengths, the majority of start sites are not present in the contig

(external), making it most important not to incorrectly predict a

start site near the edge of the sequence. At longer sequence

lengths, many more start sites are contained within the fragment

(internal), and the RBS motifs and so on become more

important.

Prodigal outperformed its nearest competitor, MetaGene

Annotator, on internal starts by 5.9% in 3000 bp fragments,

4.9% in 1200 bp fragments and 3.9% in 700 bp fragments.

The gap shrinks at the smaller fragment lengths due to less like-

lihood of upstream information to aid in start prediction, and

due to the fact MetaGene calls many more internal starts than

the other programs. On start sites external to the contig, Prodigal

achieved near perfect results, falsely calling a start site within the

fragment only 0.2–0.4% of the time, regardless of fragment

length. MetaGene Annotator outperformed MetaGenemark on

internal starts, perhaps due to the specific RBS routines added

in the annotator version (Noguchi et al., 2008). However,

MetaGene Annotator, regardless of fragment length, incorrectly

truncated many genes (5–6%) prematurely, calling an internal

start site instead of allowing the gene correctly to run off the

edge. MetaGeneMark does not experience this problem, al-

though, interestingly, at longer sequence lengths, it begins to

truncate more genes prematurely as well (1.7% at 3000 bp).

We also compared MetaProdigal with the start correction

program MetaTISA (Hu et al., 2009), which was run as a

post-processing step to MetaGene Annotator. Although

MetaTISA accurately binned most of the fragments and scored

starts with the requisite amount of upstream bases (50 nt) about

the same as MetaProdigal, it moved many starts away from the

edges of contigs to incorrect starts farther downstream in the

contigs. In addition, rather than correcting MetaGene’s trunca-

tion problem, MetaTISA exacerbated it by taking many more

genes that ran off the edges of the contigs and instead predicting

false starts for these genes internal to the contigs. A modification

to MetaTISA to leave starts near the edge of fragments

unchanged, as well as not to truncate genes that run off edges

of contigs, would result in a dramatic improvement in its

performance.

These results suggest that the simplest change programs could

make to improve their start site predictions to implement large

penalties for calling a start site near the edge of a fragment when

it is possible that the true start site lies beyond the edge. It

is worth noting that starts are not present in the contig 90% of

the time at 150 bp fragments. Even in 3000 bp fragments, the

correct start was not present in the contig in 23.6% of the cases.

This highlights the importance of not prematurely truncating

genes by calling starts near the edges of contigs, especially in

smaller fragment sizes.

3.3 Evaluating confidence measures for gene predictions

Using the confidence measures described in Section 2, we can

subdivide our results into confidence intervals and examine how

sensitivity and precision change if we only consider high confi-

dence genes, medium confidence genes, etc. Table 4 shows the

results of this analysis for 300 bp and 700 bp fragments based on

the MetaGeneMark dataset described in Section 3.1. In this

table, the sensitivity (Sn), precision (Pr) and F-score correspond

to the performance of the algorithm if only genes of that confi-

dence level or higher were accepted. For example, Prodigal could

achieve a 99.2% precision by accepting only genes with 100%

confidence in 700 bp fragments, but it would fail to identify 40%

of real genes with this stringent a restriction.
At the longer sequence lengths, Prodigal’s confidence score

corresponds very well to the actual performance. For example,

at 700 bp, 99.2% of genes with a 100% confidence score were

true positives and 95% of genes with a confidence score of

90–99.99% were true positives. At the smaller sequence lengths

(150 and 300 bp), however, the comparison worsens, and only

38.7% of genes in the 50–59% confidence interval were actually

true positives, according to the Refseq annotations of our data-

set. This suggests further room for improvement in the scoring

function of the algorithm, particularly in our Bonferroni modi-

fications to the scores (Bonferroni, 1935). Perhaps, the algorithm

should eliminate more of the lower scoring genes or add more

rules to penalize our score based on the fragment or gene length.

However, we were reluctant to make changes based on a single

dataset, because that could be considered to be fitting to the test

set data. Examining these lower scoring genes on a larger dataset

to see whether they should be kept is a worthwhile goal for future

versions. Regardless of the actual performance, the confidence

estimation gives researchers a valuable tool for deciding whether

to retain or eliminate a given gene model. We believe this %

confidence measure to be a significant improvement over a nu-

merical score, the meaning of which can be often difficult to

understand or apply to practical problems.

4 CONCLUSION

We built an open source heuristic ab initio algorithm for

metagenomic gene prediction using Prodigal. The program can

analyze fragments independently and thereby achieve full

speedup through utilization of multiple processors. Although

we understand the problems posed by sequencing errors, we

chose to focus instead on other problems that have received

less attention, such as translation initiation site identification,

handling of alternate genetic codes and providing filtering mech-

anisms for scores based on confidence. In future versions, we

hope to address sequencing errors in more detail and provide

further improvements to the program’s performance at smaller

fragment lengths.
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